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Hasegawa (1964) made calculations of the pressure dependence of 
the resistivity of Li, K and Na. In all three metals he assumed that 
the phonon anisotropy was essentially unchanged by pressure. Ex­
periments have shown t.hat this is true for Na and K, and approxima­
tely so for Li (see Table III). In Na and K, Hasegawa assumed that, 
the shape of the Fermi surfaces was also unchanged by pressure, i.e., 
that the surfaces remained effectively spherical. This means that in 
these two metals the geometry of the scattering processes is not altered 
by pressure, and therefore apart from the change in lattice vibrations 
the main effect of pressure is 011 the Fermi energy, the screening effects 
of the conduction electrons and on the matrix elements. In Li, on 
the other hand, Hasegawa had to take account of the distortion of the 
Fermi surface under pressure. In order to do this he used the result .. 
of Ham's calculations: these, as we saw above, almost certainly exag­
gerate the distortion of the Fermi surface both at normal pressure and 
under compression. Hasegawa's results are shown in Table IY and 
compared with the corresponding experimental data. It is seen that 
there is reasonable agreement between the two; on the other hand, 
because of the reliance on Ham's band structure calculations for Li 
it is hard to judge ho\y significant the agreement is in this case. ' 

Dickey et al. (196 i) used a different approach that has been remark­
ably successful in accounting for the main features of the pressure 
dependence of resistivit;; in the alkali metals. The model of a metal 
used by Dickey et al. is based on the idea of the neutral pseudo-atom 
(see for example. the exposition of this idea by Ziman. 1964). 

The first problem to be tackled is that of a single ion of the metal 
under consideration immersed in a free-electron gas of the appropriate 
Fermi energy, i.e. , the Fermi energy that corresponds to the volume 
of the metal occupied by the number of conduction electrons proper 
to that metal. Obviously , varying the volume of the metal will varv the 
Fermi energy. A calculation is now made, in terms of phase shifts. 
of the scattering of electrons at the Fermi energy by the potential due 
to this ion. The potential of t he ion is <1, combination of: 

(1) The electron-ion potential ; this is derived for the free ion by 
means of a Hartree-Fock-Slater calculation (and is taken ov~r 
from existing calculations). 

(2) A screening potential chosen to sati:;;fy the Friedel sum rule. 
This rule essentially ensures tlHLt the screen ing charge aroUlHl 
nny ion is just sufficient to proyide electrical neutrality. 
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